Statistics - B

Exercise 1

1) In class A, we have 17 students with the following heights [cm]

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Height	158	177	166	192	177	163	185	189	166	199	156	172	184	182	178	179	182

In class B, we have 12 students with the following age [years]

No.	1	2	3	4	5	6	7	8	9	10	11	12	
Age	19	27	45	22	23	28	24	33	24	31	29	31	

- a) Calculate the median and the arithmetic mean of class A and B
- b) Take class A and calculate range, MAD, unbiased and biased variance, uncorrected and corrected standard deviation.
- 2) In the last four years, a stock market investment had the following performance +10%, -15%, +12%, +7% p.a.. Within a savings contract during the last four years, an investment of 1200 Euro reached 1350 Euro in the end.
 - a) Compare the two investments via their yield p.a..
- 3) Consider two firms (A and B) issuing no new capital in the medium term with the following market capitalization P_i and net income E_i (i=A,B): P_A=200 Bil. Euro and E_A =8 Bil. Euro; P_B =800 Mil. Euro and E_B =4 Mil. Euro. In this case P_i/E_i can be interpreted as the price earnings ratio of a firm.
 - a) Consider an Index consisting of 50% of firm A and 50% of firm B. Calculate P/E of the Index.
- 4) Show the following three properties of the arithmetic mean:

 - a) $\sum_{i=1}^{n} (x_i \bar{x}) = 0$ b) $x_i' = ax_i + b \rightarrow \bar{x}_i' = a\bar{x} + b$ c) $\sum_{i=1}^{n} (x_i \bar{x})^2 \le \sum_{i=1}^{n} (x_i m)^2$ (for all m)
- 5) Show that $Var(\bar{x})$ is scaling with $\frac{1}{n}$ with respect to $Var(x_i) = \sigma^2$ resulting in $Var(\bar{x}) = \frac{\sigma^2}{n}$.
- 6) Show that $\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i \bar{x})^2$ is an unbiased estimator $(E(\hat{\sigma}^2) = \sigma)$ for the true Variance σ of a distribution if the expected value μ is unknown.

7) Take the following data set:

Х	0	1	2	3
Number	10	20	50	20

- a) Calculate median, arithmetic mean, unbiased variance, unbiased standard deviation, skewness and kurtosis
- 8) Take the weekly yields of the DAX since 1999 (data, i.e. googlefinance: =GOOGLEFINANCE("INDEXDB:DAX";"price";"01.01.1999";"XX.XX.2024";"weekly")) and calculate the skewness and kurtosis. Interprete from a descriptive point of view the distribution.
- 9) Take the following distributions and calculate the kurtosis. Interprete!

X	Counts	Counts	Counts	Counts	Counts
5	30	25	25	5	1
10	0	15	25	25	25
15	30	25	25	5	1